
Mobile Application 
Programing: Android
View Persistence



Activities
Apps are composed of 
activities

Activities are self-contained 
tasks made up of one 
screen-full of information

Activities start one another 
and are destroyed 
commonly

Apps can use activities 
belonging to another app



Creating a Custom Control
Create subclass of View class

Override:

onDraw(Canvas c)

onMeasure(int wMeasure, int hMeasure)

Add listener interface and listener property 
for the interesting events the control 
generates and call on... methods when 
events occur



View Persistence
Problem: Rotations rebuild activity

onCreate recreates view hierarchy

Data model restores state that 
has been committed, updating UI

(more on this in MVC lecture)

What about uncommitted UI 
state? eg. text in text box that has 
not yet been validated



View Persistence
Problem: Rotations rebuild activity

Solution: Implement view-level 
persistence of transient state

Set ID property of custom view

Won’t save state without one!

Override onSaveInstanceState

Override onRestoreInstanceState



onRestoreInstanceState

onSaveInstanceState



onSaveInstanceState
Create a Parcelable to store state into

Use a custom subclass of BaseSaveState 
or an instance of Bundle

Call super.onSaveInstanceState to retrieve 
super class state and store in Parcelable

Store any non-reconstructable state in 
Parcelable



onRestoreInstanceState
Cast Parcelable instance to whatever class 
was used in onSaveInstanceState

Use instanceof to ensure class is correct

Retrieve super class state and call 
super.onRestoreInstanceState to restore it

Retrieve any non-reconstructable state and 
restore it to the class instance



onSaveInstanceState vs. onPause

onSaveInstanceState is 
meant to save transient 
activity state

Instance state is deleted 
when activity is finalized

Save application state in 
onPause for all non-
transient state

See MVC for details

onRestoreInstanceState

onSaveInstanceState

finalize


